m元素集合的n个元素子集
假设有个集合拥有m个元素,任意的从集合中取出n个元素,则这n个元素所形成的可能子集有那些?
假设有5个元素的集点,取出3个元素的可能子集如下:
{1 2 3}、{1 2 4 }、{1 2 5}、{1 3 4}、{1 3 5}、{1 4 5}、{2 3 4}、{2 3 5}、{2 4 5}、{3 4 5}
这些子集已经使用字典顺序排列,如此才可以观察出一些规则:
- 如果最右一个元素小于m,则如同码錶一样的不断加1
- 如果右边一位已至最大值,则加1的位置往左移
- 每次加1的位置往左移后,必须重新调整右边的元素为递减顺序
所以关键点就在于哪一个位置必须进行加1的动作,到底是最右一个位置要加1?还是其它的位置?
在实际撰写程式时,可以使用一个变数positon来记录加1的位置,position的初值设定为n-1,因为我们要使用阵列,而最右边的索引值为最大 的n-1,在position位置的值若小于m就不断加1,如果大于m了,position就减1,也就是往左移一个位置;由于位置左移后,右边的元素会 经过调整,所以我们必须检查最右边的元素是否小于m,如果是,则position调整回n-1,如果不是,则positon维持不变。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
#include <stdio.h>
#include <stdlib.h>
#define MAX 20
int main(void) {
int set[MAX];
int m, n, position;
int i;
printf("输入集合个数 m:");
scanf("%d", &m);
printf("输入取出元素 n:");
scanf("%d", &n);
for(i = 0; i < n; i++)
set[i] = i + 1;
// 显示第一个集合
for(i = 0; i < n; i++)
printf("%d ", set[i]);
putchar('\n');
position = n - 1;
while(1) {
if(set[n-1] == m)
position--;
else
position = n - 1;
set[position]++;
// 调整右边元素
for(i = position + 1; i < n; i++)
set[i] = set[i-1] + 1;
for(i = 0; i < n; i++)
printf("%d ", set[i]);
putchar('\n');
if(set[0] >= m - n + 1)
break;
}
return 0;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
public class NofM {
private int m;
private int[] set;
private boolean first;
private int position;
public NofM(int n, int m) {
this.m = m;
first = true;
position = n - 1;
set = new int[n];
for(int i = 0; i < n; i++)
set[i] = i + 1;
}
public boolean hasNext() {
return set[0] < m - set.length + 1;
}
public int[] next() {
if(first) {
first = false;
return set;
}
if(set[set.length-1] == m)
position--;
else
position = set.length - 1;
set[position]++;
// 调整右边元素
for(int i = position + 1; i < set.length; i++)
set[i] = set[i-1] + 1;
return set;
}
public static void main(String[] args) {
NofM nOfm = new NofM(3, 5);
while(nOfm.hasNext()) {
int[] set = nOfm.next();
for(int i = 0; i < set.length; i++) {
System.out.print(set[i]);
}
System.out.println();
}
}
}
|